

AIR-SAMPLE

A low-cost screening tool in biosecured broiler production

Gro S. Johannessen/Food Safety and Animal Health Research/Norwegian Veterinary Institute

AIR SAMPLE

Total funding: 620k Euro

Period: 2 years (Jan 2018 - Dec. 2019), extended to 30.11.2020

Coordinator: Jeffrey Hoorfar, DTU Food.

Partners:

Julia Christensen & Jeffrey Hoorfar, DTU Food.
 Gro Johannessen, Mona Torp & Camilla Sekse, NVI.

Norway

Renáta Karpíšková & Ivana Koláčková, VRI.
 Czech Republic

• Kinga Wieczorek & Jacek Osek, NVRI. Poland

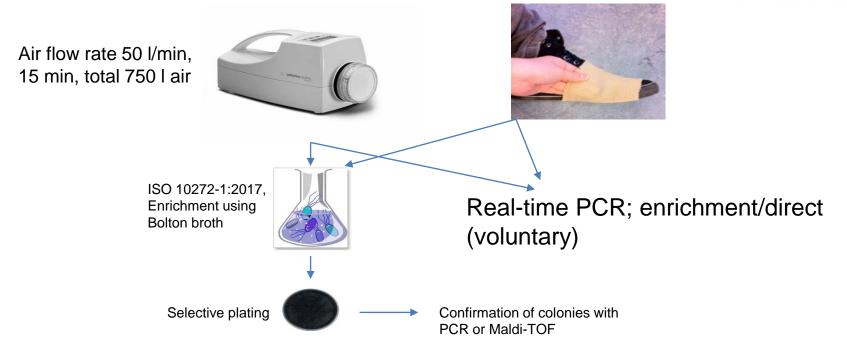
• Elisabetta Di Giannatale & Giuliano Garofolo, IZSAM. Italy

Pre-slaughter sampling for ne Campylobacter

Current method: boot swabs or fecal droppings

Future method: air sampling

What have we done?


- Pilot study in 2018; testing the method and finalizing protocol, 5 countries
- Main study in 2019; multi-country study across Europe, 5 countries
- Metagenomics

Pilot study 2018

Experimental set-up ne ne

Results

Number of positive samples:

Country	No. of flocks sampled	Cultivation method				PCR methods			
		Boot socks		Air samples		Boot socks		Air samples	
		Direct	Enrich.	Direct	Enrich.	Direct	Enrich.	Direct	Enrich.
Italy	10	6/10	0/10	0/10	1/10	7/10	5/5	8/10	5/5
Czech rep.	10	ND*	0/10	ND	0/10	ND	0/10	2/9	0/10
Norway	10	ND	3/10	ND	0/10	ND	ND	ND	ND
Poland	8	ND	3/8	ND	1/8	ND	ND	3/8	ND
Denmark	6	ND	1/6	ND	1/6	ND	ND	1/6	ND

^{*}ND = Not done

Not all samples have been tested with all methods.

Results cont.

- Cultivation methods
 - 7 of 44 boot socks positive on enrichment, only two had corresponding positive air samples
 - One positive air sample was negative on corresponding boot sock
- PCR method examples
 - Four of five partners reported PCR results
 - 14 of 33 air samples screened <u>directly</u> returned positive PCR
 - Five of the 14 were positive both directly and after enrichment of air samples, but negative on the corresponding cultivation of air samples

Published in: Johannessen *et al.* 2020. *Campylobacter* in chicken – critical parameters for international, multicentre evaluation of air sampling and detection methods, Food Microbiol, 90, doi: 10.1016/j.fm.2020.103455

Other observations HEALTHE

- Agreed on using ISO 10272-1, but still variations among labs in how the method was carried out
 - Volume of Bolton broth added to samples; fixed volume (90, 100 and 250 ml) or 1:10 weight volume dilution
- Partners doing PCR used primer-probe combination from Josefsen et al (2014), but used different DNA extraction methods and PCR platforms

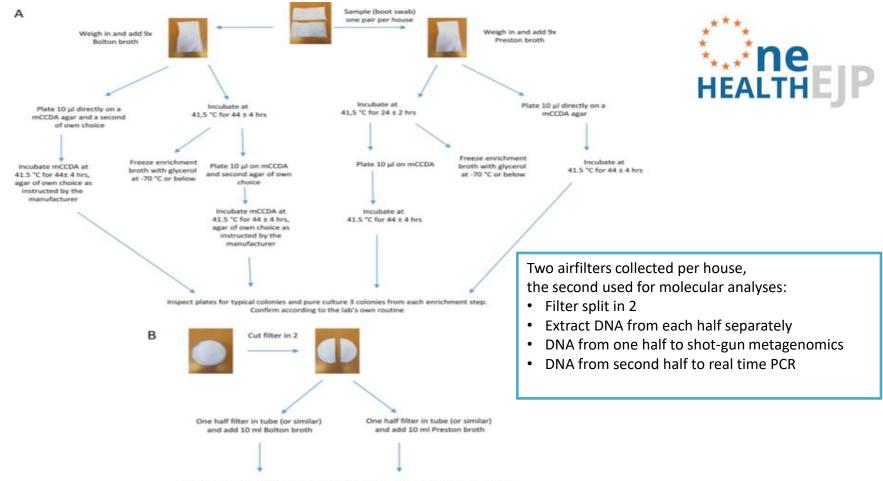
Main study 2019

- Discussed experiences from the pilot study and finalised a protocol
 - Use ISO 10272-1:2017 and test both Bolton and Preston protocols
 - Use agar medium of own choice in Bolton protocol
 - Real-time PCR on DNA extracted directly from airfilters
 - Use the same DNA extraction protocol as agreed upon after meeting in Oslo
 - Use the same reagents and master mix distributed from the Danish partner and the PCR platforms as per partner

Published in: Hoorfar *et al.* 2020. Foodborne *Campylobacter*: A multi-center proposal for a fast screening tool in biosecured chicken flocks. Appl Environ Microbiol. AEM.01051-20. doi: 10.1128/AEM.01051-20. Online ahead of print.

Experimental set-up

Air flow rate 50 l/min, 15 min, total 750 l air


ISO 10272-1:2017, Enrichment using Bolton and Preston

Real-time PCR directly from air filters

Selective plating

Confirmation of colonies with PCR or Maldi-TOF

Proceed with direct plating and enrichment as described for boot swabs in the part A.

FIG 1 Flow diagram showing detection of Campylobacter spp. from boot swab samples (A) and air filters (B) using ISO 10272-1:2017.

Results from boot swabs healthejp

		No. of positive boot swabs					
		Direct	plating	Enrichment			
Country	No. of flocks	Preston	Bolton	Preston	Bolton		
Czech Rep.	12	5	4	2	0		
Denmark	18	0	0	6	0		
Italy	10	10	10	10	10		
Norway	10	0	0	0	0		
Poland	12	6	6	5	0		

Results from air filters HEALTHEJP

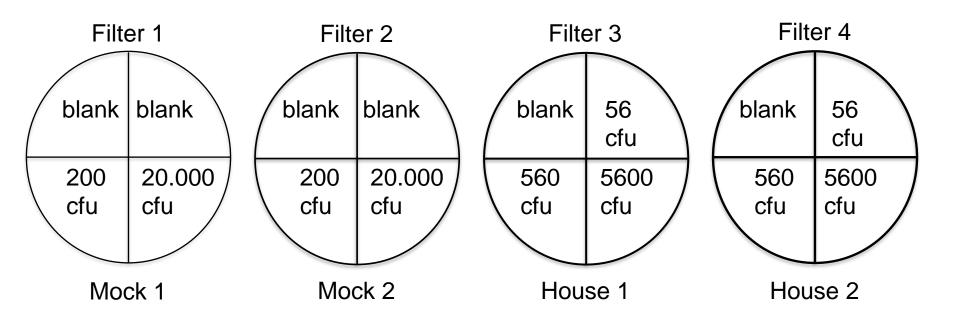
		No. of positive findings from air filters						
		Direct	plating	Enrich	Direct real-			
Country	No. flocks	Preston	Bolton	Preston	Bolton	time PCR		
Czech Rep.	12	0	0	1	2	5		
Denmark	18	0	0	0	0	15		
Italy	10	0	0	0	0	10		
Norway	10	0	0	0	0	0		
Poland	12	0	0	1	1	6		

Results

- Cultivation of boot swabs:
 - Highest number of positive samples from enrichment in Preston
- Air samples:
 - Higher frequency of positive samples from PCR (significantly different)
 - Cultivation gave very few positive samples

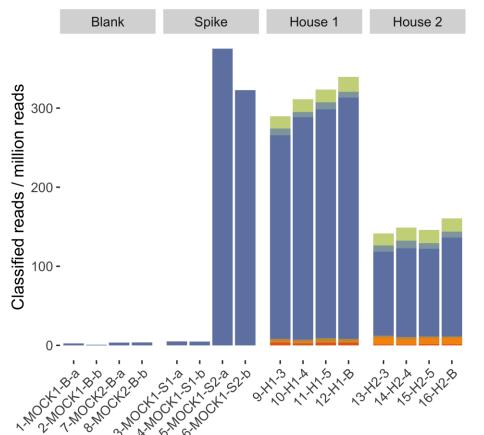
Concluding remarks

- Air sampling has been tested in areas with different Campylobacter pressure in the broiler population
- Air sampling combined with real-time PCR may be an alternative for screening for Campylobacter
- If isolates are desirable, an enrichment protocol should be preferred
- Air filters may be used for screening for multiple microbes, but needs further testing


Metagenomic sequencing of airfilters from Poultry farms

Thomas Haverkamp / Epidemiology

Pilot experiment



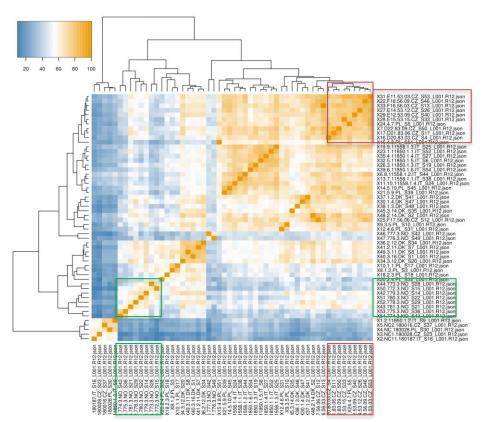
Spike (n) CFU Campylobacter jejuni

Pilot experiment

Campylobacter avium
Campylobacter coli
Campylobacter jejuni
Campylobacter lari

Campylobacter pinnipediorum

Campylobacter sp. RM8964


Campylobacter sp. RM896

Blank samples have misclassified reads.

Mock with 200 CFU > 80 reads classified

Main experiment - preliminary results

Comparison of Poultry farms using Airfilter metagenomics.

5 Countries:

Czech Republic

Denmark

Italy

Norway

Poland

Same country farms form clusters

What we have delivered HEALTHE

> Appl Environ Microbiol. 2020 Aug 7;AEM.01051-20. doi: 10.1128/AEM.01051-20. Online ahead of print.

Foodborne *Campylobacter*: A multi-center proposal for a fast screening tool in biosecured chicken flocks

```
Jeffrey Hoorfar <sup>1</sup>, Ivana Koláčková <sup>2</sup>, Gro S Johannessen <sup>3</sup>, Giuliano Garofolo <sup>4</sup>, Francesca Marotta <sup>4</sup>
, Kinga Wieczorek <sup>5</sup>, Jacek Osek <sup>5</sup>, Mona Torp <sup>3</sup>, Bjørn Spilsberg <sup>3</sup>, Camilla Sekse <sup>3</sup>, Natasia Rebekka
Thornval 6, Renáta Karpíšková 2
Affiliations + expand
PMID: 32769183 DOI: 10.1128/AFM.01051-20
```

> Food Microbiol. 2020 Sep;90:103455. doi: 10.1016/j.fm.2020.103455. Epub 2020 Feb 8.

Campylobacter in chicken - Critical parameters for international, multicentre evaluation of air sampling and detection methods

```
Gro S Johannessen <sup>1</sup>, Giuliano Garofolo <sup>2</sup>, Gabriella Di Serafino <sup>2</sup>, Ivana Koláčková <sup>3</sup>, Renáta
Karpíšková <sup>3</sup>, Kinga Wieczorek <sup>4</sup>, Jacek Osek <sup>4</sup>, Julia Christensen <sup>5</sup>, Mona Torp <sup>1</sup>, Jeffrey Hoorfar <sup>6</sup>
Affiliations + expand
PMID: 32336358 DOI: 10.1016/i.fm.2020.103455
```


Video: https://www.youtube.com/watch?v=S9mapXSM8tw&feature=youtu.be

Aknowledgements HEALTH

- The farmer organisations and farmers who provided access to chicken houses
- Sartorius for providing the Air samplers and air filters
- This project is a part of the One Health EJP that has received funding from Horizon 2020 under grant agreement no. 773830