

### Proficiency test number 38 WGS and Cluster Analysis of *Campylobacter*

Bo Segerman and Ásgeir Ástvaldsson EURL-*Campylobacter* workshop Uppsala, October 22-23rd, 2024







Co-funded by the European Union Co-funded by the European Union. Views and opinions expressed are however those of the authors only and do not necessarily reflect those of the European Union or the European Health and Digital Executive Agency (HaDEA). Neither the European Union nor HaDEA can be held responsible for them.





### Objective

Assess quality of WGS data and accuracy of sequence analysis of *Campylobacter* from participating laboratories

### Purpose

To help laboratories implement and evaluate their capacity of WGS and sequence analysis of Campylobacter

# Participation

- 24 NRLs in 17 EU Member states and in Iceland, Switzerland and the UK registered for PT38
- All NRLs reported results to the EURL
  - One NRL only reported results on the sequence analysis part 0

# Outline

### **Divided in two parts**

- Part 1: Library preparations and sequencing of two DNA samples
- Samples for part 1 were distributed together with PT36, 11<sup>th</sup> of March 2024

- **Part 2**: QC, species identification, MLST and sequence samples
- Dataset for part 2 was available for downloa distributed

g of two DNA samples er with PT36, 11<sup>th</sup> of March 2024

Part 2: QC, species identification, MLST and cluster analysis of a dataset containing 18 raw data

Dataset for part 2 was available for download from OneDrive on the same day as the PTs were

### Part 1

### Samples should be processed according to standard laboratory procedures

DNA reconstitution > DNA quantification and QC > Library preparations > Sequencing 0

TABLE 1. Identity of the two DNA samples distributed to the NRLs in proficiency test No. 38, 2024.

| Sample ID | Species              | Sampling year | Sequence type (ST) | GC content (%) | Genome size                |
|-----------|----------------------|---------------|--------------------|----------------|----------------------------|
| PT38-1    | Campylobacter jejuni | 2016          | 464                | 30.29          | 1.8 Mb                     |
| PT38-2    | Campylobacter coli   | 2017          | 4709               | 31.18          | 1.8 Mb + 0.1 Mb<br>plasmid |

**Reference genomes available from PT28** 

### Part 2

| •  | D    | ataset containing 18 raw data sequence              | PT  |
|----|------|-----------------------------------------------------|-----|
|    | Sa   | mples from <i>Campylobacter</i>                     | PT  |
| •  | Tł   | nree samples in-silico modified                     | PT  |
|    | 0    | PT38-10: contaminated with 10% P.                   | PT  |
|    |      | aeruginosa reads                                    | PT  |
|    | 0    | PT38-15: modified so only 13% bases were            | PT: |
|    |      | Q30+ > too little high-quality data to be<br>useful | PT  |
|    | 0    | PT38-19: contaminated with 40% S. enterica          | PT  |
|    |      |                                                     | PT  |
|    | C    |                                                     | PT  |
| ۲e | erto | orm QC, identify species, designate IVILS I and     | PT  |
| pe | erfo | orm cluster analysis                                | PT  |
|    |      |                                                     | ΡΤ  |

| Sample ID | Species   | Location | Sampling<br>time | Sequencer                   | Amount of<br>data<br>(Mbases) | % <b>Q30</b> + | Q30+ base<br>coverage<br>(X) |
|-----------|-----------|----------|------------------|-----------------------------|-------------------------------|----------------|------------------------------|
| PT38-3    | C. jejuni | Farm A   | Oct., 2020       | NovaSeq<br>(151+151)        | 455                           | 90             | 250                          |
| PT38-4    | C. jejuni | Farm B   | Oct., 2020       | MiSeq<br>(251+251)          | 212                           | 93             | 120                          |
| PT38-5    | C. jejuni | Farm C   | Sep., 2019       | NovaSeq<br>(151+151)        | 417                           | 86             | 220                          |
| PT38-6    | C. jejuni | Farm C   | Sep., 2021       | MiSeq<br>(76+76)            | 149                           | 95             | 91                           |
| PT38-7    | C. jejuni | Farm D   | Jun, 2021        | NextSeq<br>500<br>(151+151) | 366                           | 89             | 223                          |
| PT38-8    | C. jejuni | Farm E   | Nov., 2020       | NovaSeq<br>(151+151)        | 438                           | 93             | 268                          |
| PT38-9    | C. jejuni | Farm D   | Aug., 2018       | MiSeq<br>(76+76)            | 499                           | 95             | 290                          |
| PT38-10   | C. jejuni | Farm F   | Jul., 2020       | MiSeq<br>(76+76)            | 198                           | 90             | 121                          |
| PT38-11   | C. coli   | Farm G   | Sep., 2021       | NovaSeq<br>(151+151)        | 400                           | 90             | 230                          |
| PT38-12   | C. jejuni | Farm C   | Sep., 2021       | NovaSeq<br>(151+151)        | 423                           | 88             | 256                          |
| PT38-13   | C. coli   | Farm G   | Sep., 2021       | NovaSeq<br>(151+151)        | 485                           | 90             | 280                          |
| PT38-14   | C. jejuni | Farm C   | Sep., 2019       | NovaSeq<br>(151+151)        | 413                           | 85             | 253                          |
| PT38-15   | C. jejuni | Farm H   | Aug., 2017       | NovaSeq<br>(151+151)        | 88                            | 13             | 7                            |
| PT38-16   | C. jejuni | Farm I   | Sep., 2020       | MiSeq<br>(251+251)          | 250                           | 93             | 152                          |
| PT38-17   | C. jejuni | Farm J   | Oct., 2020       | MiSeq<br>(251+251)          | 192                           | 93             | 117                          |
| PT38-18   | C. jejuni | Farm K   | Oct., 2020       | NovaSeq<br>(151+151)        | 242                           | 92             | 220                          |
| PT38-19   | C. jejuni | Farm L   | Aug., 2019       | MiSeq<br>(76+76)            | 124                           | 95             | 91                           |
| PT38-20   | C. jejuni | Farm C   | Sep., 2021       | NovaSeq<br>(151+151)        | 450                           | 90             | 275                          |

 TABLE 2. Identity of the 18 raw-data samples distributed to the NRLs in proficiency test No. 38, 2024.



# Reporting

- **Deadline:** 15<sup>th</sup> of May 2024
- Through a Questback questionnaire

Requested data uploaded to a personal OneDrive folderPart 1:

Raw sequence files (i.e. fastq files)

• Part 2:

Assembly files (FASTA), if part of analysis Tree used to draw conclusions (e.g. phylogenetic tree or mst) Raw clustering data used to create trees (e.g. distance matric or alignment)

# Part 1 - Assessment of sequence quality

### Cut-off values defined for six different criteria to assess the sequence quality of two DNA samples

**TABLE 3**. Overview of the criteria and cut-off values used for assessment of sequence quality in proficiency test No. 38 (2024).

| Criteria             | Cut-off value   |
|----------------------|-----------------|
| Total amount of data | >30X or 80X d   |
| Q30+                 | >70 %, 75 % oi  |
| Contamination        | <5 % from non   |
| Reference coverage   | >98 % of refere |
| GC deviation         | <4 % deviation  |
| Assembly targets     | >95 % of targe  |

<sup>a</sup>The maximum amount of data used for the assessment was 80X coverage for NRLs using Nextera XT and 30X coverage for NRLs using other library preparation kits.

### for satisfactory performance

epending on library preparation kit (80X for Nextera XT)

- r 80 % depending on read length (300, 250, 150-100 bp)
- i-target species
- ence genome<sup>a</sup>
- from reference genomes
- ets found

Part 1 - Results



FIGURE 1. A: Total amount of data submitted by the NRLs. Thresholds were set at 30X for unbiased library preps (Blue) and 80x for Nextera XT preps (Red). B: Percentage of Q30+ bases in the WGS data submitted by the NRLs. Thresholds are set based on the read length used. C: Deviation of the GC content in the reads from the expected GC content (the GC content of the reference genome). **D:** Contamination levels estimated by the Kraken2 software using the 30 GB standard database.

### Part 1 - Results



FIGURE 2. A: Coverage of the reference genome (k-mers) in the read data at 30X sequencing depth. The threshold applies for non-Nextera XT library kits. B: Coverage of the reference genome (k-mers) in the read data at 80X sequencing depth. The threshold applies for Nextera XT library kits.

# Part 1 - Results

- 21 NRLs fulfilled the criteria for satisfactory performance
- 2 NRLs scored below the criteria for satisfactory performance

 TABLE 5.
 Overview of assessment of the sequence quality of each NRL in proficiency test No. 38 (2024). The number indicate number of samples out of two reaching the criteria cut-offs.

| Lab ID | Amount of<br>data | Q30+ | Contamination | Reference<br>coverage | GC deviation | Assembly targets | Overall ev<br>sequence |
|--------|-------------------|------|---------------|-----------------------|--------------|------------------|------------------------|
| L104   | 2/2               | 2/2  | 2/2           | 2/2                   | 2/2          | 2/2              | Satisfactory           |
| L105   | 2/2               | 2/2  | 2/2           | 2/2                   | 2/2          | 2/2              | Satisfactory           |
| L106   | 2/2               | 2/2  | 2/2           | 2/2                   | 2/2          | 2/2              | Satisfactory           |
| L107   | 2/2               | 0/2  | 2/2           | 2/2                   | 2/2          | 2/2              | Needs imp              |
| L110   | 2/2               | 2/2  | 2/2           | 2/2                   | 2/2          | 2/2              | Satisfactory           |
| L124   | 2/2               | 2/2  | 2/2           | 2/2                   | 2/2          | 2/2              | Satisfactory           |
| L128   | 2/2               | 2/2  | 2/2           | 2/2                   | 2/2          | 2/2              | Satisfactory           |
| L134   | 2/2               | 2/2  | 2/2           | 2/2                   | 2/2          | 2/2              | Satisfactory           |
| L139   | 2/2               | 2/2  | 2/2           | 2/2                   | 2/2          | 2/2              | Satisfactory           |
| L143   | 2/2               | 2/2  | 2/2           | 2/2                   | 2/2          | 2/2              | Satisfactory           |
| L144   | 2/2               | 2/2  | 2/2           | 2/2                   | 2/2          | 2/2              | Satisfactory           |
| L145   | 2/2               | 2/2  | 2/2           | 2/2                   | 2/2          | 2/2              | Satisfactory           |
| L148   | 2/2               | 2/2  | 2/2           | 2/2                   | 2/2          | 2/2              | Satisfactory           |
| L152   | 2/2               | 2/2  | 2/2           | 2/2                   | 2/2          | 2/2              | Satisfactory           |
| L156   | 2/2               | 2/2  | 2/2           | 2/2                   | 2/2          | 2/2              | Satisfactory           |
| L158   | 2/2               | 2/2  | 2/2           | 2/2                   | 2/2          | 2/2              | Satisfactory           |
| L171   | 2/2               | 2/2  | 2/2           | 2/2                   | 2/2          | 2/2              | Satisfactory           |
| L175   | 2/2               | 2/2  | 2/2           | 2/2                   | 2/2          | 2/2              | Satisfactory           |
| L178   | 2/2               | 0/2  | 2/2           | 2/2                   | 2/2          | 2/2              | Needs imp              |
| L179   | 2/2               | 2/2  | 2/2           | 2/2                   | 2/2          | 2/2              | Satisfactory           |
| L183   | 2/2               | 2/2  | 2/2           | 2/2                   | 2/2          | 2/2              | Satisfactory           |
| L189   | 2/2               | 2/2  | 2/2           | 2/2                   | 2/2          | 2/2              | Satisfactory           |
| L199   | 2/2               | 2/2  | 2/2           | 2/2                   | 2/2          | 2/2              | Satisfactory           |



# Assessment of sequence quality (part 2)

### Cut-off values defined for four different criteria, which were all assessed separately

**TABLE 4**. Overview of the criteria and cut-off values used for assessment of sequence analysis in proficiency test No. 38 (2024).

| Criteria                       | Cut-off value f |
|--------------------------------|-----------------|
| Evaluation of sequence quality | Identify and ex |
| Species identification         | All samples and |
| MLST determination             | All samples and |
| Cluster detection              | Cluster A (or A |

<sup>a</sup>Samples PT38-10, PT38-15, PT38-19 excluded from the assessment.

### for satisfactory performance

clude (or 'clean up') sample PT38-10, PT38-15 and PT38-19

alysed<sup>a</sup> should be correctly species identified

alysed<sup>a</sup> should be designated with correct ST

B), C and D should be identified

| Part 2 - Results                           | <b>TABLE 6</b> . Overview of results from the participants' evaluation of sequence quality in Part 2 of proficiency test No. 38 (2024). |                                        |                                       |                                    |                               |  |  |  |  |  |
|--------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|---------------------------------------|------------------------------------|-------------------------------|--|--|--|--|--|
| <b>Evaluation of Sequence Quality</b>      | Lab ID                                                                                                                                  | Excluded PT38-10<br>(10 % Pseudomonas) | Excluded PT38-19<br>(40 % Salmonella) | Excluded PT38-15<br>(low QC score) | Number of other<br>exclusions |  |  |  |  |  |
| <b></b>                                    | L104                                                                                                                                    | Yes <sup>a</sup>                       | Yes <sup>a</sup>                      | Yes                                | 0                             |  |  |  |  |  |
| Three samples were in-silico               | L105                                                                                                                                    | No                                     | Yes                                   | Yes                                | 2                             |  |  |  |  |  |
| modified                                   | L106                                                                                                                                    | Yes                                    | Yes                                   | Yes                                | 0                             |  |  |  |  |  |
| mounieu.                                   | L107                                                                                                                                    | Yes                                    | Yes                                   | Yes                                | 0                             |  |  |  |  |  |
|                                            | L110                                                                                                                                    | No                                     | No                                    | Yes                                | 0                             |  |  |  |  |  |
| Participants were expected                 | L124                                                                                                                                    | Yes                                    | Yes                                   | Yes                                | 1                             |  |  |  |  |  |
| to ovelude these samples                   | L128                                                                                                                                    | Yes                                    | Yes                                   | Yes                                | 0                             |  |  |  |  |  |
| to exclude these samples                   | L134                                                                                                                                    | No                                     | Yes                                   | Yes                                | 0                             |  |  |  |  |  |
| from analysis                              | L139                                                                                                                                    | No                                     | No                                    | Yes                                | 0                             |  |  |  |  |  |
| n onn anarysis                             | L143                                                                                                                                    | Yes                                    | Yes                                   | Yes                                | 3                             |  |  |  |  |  |
| 18 of 21 NRLs avaluadad                    | L144                                                                                                                                    | Yes                                    | Yes                                   | Yes                                | 0                             |  |  |  |  |  |
| 0 TO UIZATNILS EXCluded                    | L145                                                                                                                                    | Yes                                    | Yes                                   | Yes                                | 0                             |  |  |  |  |  |
| contaminated samples                       | L148                                                                                                                                    | Yes <sup>a</sup>                       | Yes                                   | Yes                                | 2                             |  |  |  |  |  |
| contanniacea sampies                       | L152                                                                                                                                    | No                                     | Yes                                   | Yes                                | 0                             |  |  |  |  |  |
| <ul> <li>All NRLs avaluaded the</li> </ul> | L156                                                                                                                                    | Yes                                    | Yes                                   | Yes                                | 1                             |  |  |  |  |  |
| O AITINLS EXCluded the                     | L158                                                                                                                                    | Yes                                    | Yes                                   | Yes                                | 0                             |  |  |  |  |  |
| low-quality samples                        | L171                                                                                                                                    | Yes                                    | Yes                                   | Yes                                | 0                             |  |  |  |  |  |
| row quality sumpted                        | L175                                                                                                                                    | Yes                                    | Yes                                   | Yes                                | 0                             |  |  |  |  |  |
| 7 of 21 NIRLs avaluaded                    | L178                                                                                                                                    | Yes                                    | Yes                                   | Yes                                | 0                             |  |  |  |  |  |
| 0 / UIZHINNLS EXCluded                     | L179                                                                                                                                    | Yes                                    | Yes                                   | Yes                                | 0                             |  |  |  |  |  |
| additional samples                         | L183                                                                                                                                    | Yes                                    | Yes                                   | Yes                                | 1                             |  |  |  |  |  |
| additional samples                         | L186                                                                                                                                    | Yes <sup>a</sup>                       | Yes                                   | Yes                                | 0                             |  |  |  |  |  |
|                                            | L189                                                                                                                                    | No                                     | Yes                                   | Yes                                | 0                             |  |  |  |  |  |
|                                            | L199                                                                                                                                    | Yes                                    | Yes                                   | Yes                                | 8                             |  |  |  |  |  |

"Sample excluded from the analysis in the supplementary data, but exclusion was not reported in Questback.

### Part 2 - Results **Species identification and MLST**

Participants were expected to identify the species and determine the ST

- 22 of 24 identified correct species in all samples
- 21 of 24 determined the ST correctly

| Lab<br>ID | PT38<br>-3 | PT38<br>-4 | PT38<br>-5 | PT38<br>-6 | PT38<br>-7 | PT38<br>-8 | PT38<br>-9 | PT38<br>-10 | PT38<br>-11 | PT38<br>-12 | PT38<br>-13     | PT38<br>-14 | PT38<br>-15 | PT38<br>-16 | PT38<br>-17 | PT38<br>-18 | PT:<br>-1 |
|-----------|------------|------------|------------|------------|------------|------------|------------|-------------|-------------|-------------|-----------------|-------------|-------------|-------------|-------------|-------------|-----------|
| L104      | 257        | 257        | 257        | 148        | 257        | 257        | 257        |             | 854         | 148         | 854             | 257         |             | 257         | 257         | 257         |           |
| L105      | 257        | 257        | 257        | 148        | 257        | 257        | 257        |             | 854         | 148         | 854             | 257         |             | 257         | 257         | 257         |           |
| L106      | 257        | 257        | 257        | 148        | 257        | 257        | 257        |             | 854         | 148         | 854             | 257         |             | 257         | 257         | 257         |           |
| L107      | 257        | 257        | 257        | 148        | 257        | 257        | 257        |             | 854         | 148         | 854             | 257         |             | $ND^{a}$    | 257         | 257         |           |
| L110      | 257        | 257        | 257        | 148        | 257        | 257        | 257        |             | 854         | 148         | 854             | 257         |             | 257         | 257         | 257         |           |
| L124      | 257        | 257        | 257        | 148        | 257        | 257        | 257        |             | 854         | 148         | 854             | 257         |             | 257         | 257         | 257         |           |
| L128      | 257        | 257        | 257        | 21         | 257        | 257        | 257        |             | 828         | 21          | 828             | 257         |             | 257         | 257         | 257         |           |
| L134      | 257        | 257        | 257        | 148        | 257        | 257        | 257        |             | 854         | 148         | 854             | 257         |             | 257         | 257         | 257         |           |
| L139      | 257        | 257        | 257        | 148        | 257        | 257        | 257        |             | 854         | 148         | 854             | 257         |             | 257         | 257         | 257         |           |
| L143      | 257        | 257        | EXCL       | 148        | 257        | 257        | 257        |             | 854         | EXCL        | 854             | EXCL        |             | 257         | 257         | 257         |           |
| L144      | 257        | 257        | 257        | 148        | 257        | 257        | 257        |             | 854         | 148         | 854             | 257         |             | 257         | 257         | 257         |           |
| L145      | 257        | 257        | 257        | 148        | 257        | 257        | 257        |             | 854         | 148         | 854             | 257         |             | 257         | 257         | 257         |           |
| L148      | 257        | 257        | EXCL       | 148        | 257        | 257        | 257        |             | 854         | 148         | 854             | 257         |             | EXCL        | 257         | 257         |           |
| L152      | 257        | 257        | 257        | 148        | 257        | 257        | 257        |             | 854         | 148         | 854             | 257         |             | 257         | 257         | 257         |           |
| L156      | 257        | 257        | 257        | 148        | 257        | 257        | 257        |             | 854         | 148         | 854             | 257         |             | 257         | 257         | 257         |           |
| L158      | 257        | 257        | 257        | 148        | 257        | 257        | 257        |             | 854         | 148         | 854             | 257         |             | 257         | 257         | 257         |           |
| L171      | 257        | 257        | 257        | 148        | 257        | 257        | 257        |             | 854         | 148         | 854             | 257         |             | 257         | 257         | 257         |           |
| L175      | 257        | 257        | 257        | 148        | 257        | 257        | 257        |             | 854         | 148         | 854             | 257         |             | 257         | 257         | 257         |           |
| L178      | 257        | 257        | 257        | 148        | 257        | 257        | 257        |             | 854         | 148         | 854             | 257         |             | 257         | 257         | 257         |           |
| L179      | 257        | 257        | 257        | 148        | 257        | 257        | 257        |             | 854         | 148         | 854             | 257         |             | 257         | 257         | 257         |           |
| L183      | 257        | 257        | 257        | 148        | 257        | 257        | 257        |             | $ND^b$      | 148         | ND <sup>b</sup> | 257         |             | 257         | 257         | 257         |           |
| L186      | 257        | 257        | 257        | 148        | 257        | 257        | 257        |             | 854         | 148         | 854             | 257         |             | 257         | 257         | 257         |           |
| L189      | 257        | 257        | 257        | 148        | 257        | 257        | 257        |             | 854         | 148         | 854             | 257         |             | 257         | 257         | 257         |           |
| L199      | 257        | 257        | 257        | 148        | 257        | 257        | 257        |             | 854         | 148         | 854             | 257         |             | 257         | 257         | 257         |           |

<sup>a</sup> Missing alleles.

<sup>b</sup> All seven alleles were correctly identified, but ST was not determined.

<sup>c</sup> Wrongly reported in Questback, but correctly determined in the supplementary uploaded data.

 TABLE 7. Overview of results from the MLST determination in Part 2 of proficiency test No. 38 (2024).

| РТ38<br>-19 | PT38<br>-20      |
|-------------|------------------|
|             | 148              |
|             | 148              |
|             | 148              |
|             | 148              |
|             | 148              |
|             | 148              |
|             | 21               |
|             | 148              |
|             | 148              |
|             | 148              |
|             | 148              |
|             | 148              |
|             | 148              |
|             | 148              |
|             | 148              |
|             | 148              |
|             | 148              |
|             | 148              |
|             | 148              |
|             | 148              |
|             | EXCL             |
|             | 148              |
|             | 148 <sup>c</sup> |
|             | 148              |

### Part 2 - Results **Cluster detection**

|      | PT38-3 | PT38-4 | PT38-8 | PT38-16 | РТ38-18 | PT38-17 | PT38-9 | PT38-14 | PT38-5 | PT38-7 | PT38-6 | PT38-12 | PT38-20 | PT38-11 | PT38-13 | PT38-15 | PT38-10 | PT38-19 | cut-off         | schema         | software       |
|------|--------|--------|--------|---------|---------|---------|--------|---------|--------|--------|--------|---------|---------|---------|---------|---------|---------|---------|-----------------|----------------|----------------|
| L158 | А      | А      | А      | А       | А       | А       | А      | А       | А      | А      | С      | С       | С       | D       | D       | EXCL    | EXCL    | EXCL    | NA              | PubMLST v1     | cgMLSTFinder   |
| L107 | А      | А      | А      | А       | А       | А       | А      | А       | А      | А      | С      | С       | С       | D       | D       | EXCL    | EXCL    | EXCL    | NA              | NA             | snippy         |
| L199 | А      | А      | А      | А       | А       | А       | EXCL   | EXCL    | EXCL   | EXCL   | NO     | EXCL    | 7 AD            | PubMLST v1     | ChewBBACA      |
| L106 | А      | А      | А      | А       | А       | А       | А      | А       | А      | NO     | С      | С       | С       | D       | D       | EXCL    | EXCL    | EXCL    | 13 AD           | Ridom core     | Ridom SeqSphe  |
| L183 | А      | А      | А      | А       | А       | А       | А      | А       | А      | NO     | С      | С       | EXCL    | D       | D       | EXCL    | EXCL    | EXCL    | 13 AD           | Ridom core     | Ridom SeqSphe  |
| L152 | А      | А      | А      | А       | А       | А       | А      | А       | А      | NO     | С      | С       | С       | D       | D       | EXCL    | С       | EXCL    | 13 AD           | Ridom core     | Ridom SeqSphe  |
| L189 | А      | А      | А      | А       | А       | А       | А      | А       | А      | NO     | С      | С       | С       | D       | D       | EXCL    | NO      | EXCL    | 7-10 AD         | Ridom core     | Ridom SeqSphe  |
| L186 | А      | А      | А      | А       | А       | А       | А      | Α       | А      | NO     | С      | С       | С       | D       | D       | EXCL    | EXCL    | EXCL    | 13 AD           | Ridom core     | Ridom SeqSphe  |
| L143 | А      | А      | А      | А       | А       | А       | А      | EXCL    | EXCL   | NO     | С      | EXCL    | С       | D       | D       | EXCL    | EXCL    | EXCL    | 6 SNPs /6 AD    | Innuendo core  | ChewBBACA/in   |
| L145 | А      | А      | А      | А       | А       | А       | А      | В       | В      | NO     | С      | С       | С       | D       | D       | EXCL    | EXCL    | EXCL    | 0.5% AD         | Innuendo WG    | ChewBBACA      |
| L178 | А      | А      | А      | А       | А       | А       | А      | В       | В      | NO     | С      | С       | С       | D       | D       | EXCL    | EXCL    | EXCL    | 10 AD           | PubMLST v1     | ChewBBACA      |
| L139 | А      | А      | А      | Α       | А       | А       | А      | В       | В      | NO     | С      | С       | С       | D       | D       | EXCL    | NO      | NO      | 13 AD           | PubMLST v1     | Ridom SeqSphe  |
| L156 | А      | А      | А      | EXCL    | А       | А       | А      | В       | В      | NO     | С      | С       | С       | D       | D       | EXCL    | EXCL    | EXCL    | 10 SNPs         | NA             | SnapperDB      |
| L105 | А      | А      | А      | А       | А       | А       | А      | В       | В      | NO     | С      | С       | С       | EXCL    | EXCL    | EXCL    | NO      | EXCL    | 10 AD           | Innuendo core  | ChewBBACA      |
| L148 | А      | А      | А      | EXCL    | А       | А       | А      | NO      | EXCL   | NO     | С      | С       | С       | D       | D       | EXCL    | EXCL    | EXCL    | 10 AD           | PubMLST v1     | Ridom SeqSphe  |
| L124 | А      | А      | А      | EXCL    | А       | А       | NO     | В       | В      | NO     | С      | С       | С       | D       | D       | EXCL    | EXCL    | EXCL    | 5 AD            | PubMLST v1     | Ridom SeqSphe  |
| L128 | А      | А      | А      | А       | А       | А       | NO     | В       | В      | NO     | С      | С       | С       | D       | D       | EXCL    | EXCL    | EXCL    | 5 AD            | PubMLST v1     | BioNumerics    |
| L179 | А      | А      | А      | А       | А       | А       | NO     | В       | В      | NO     | С      | С       | С       | D       | D       | EXCL    | EXCL    | EXCL    | 10 AD           | PubMLST v1     | Ridom SeqSphe  |
| L175 | А      | А      | А      | А       | А       | А       | NO     | В       | В      | NO     | С      | С       | С       | D       | D       | EXCL    | EXCL    | EXCL    | 10 AD           | PubMLST v1     | Ridom SeqSphe  |
| L110 | А      | А      | А      | А       | А       | А       | NO     | В       | В      | NO     | С      | С       | С       | D       | D       | EXCL    | С       | NO      | NA              | NA             | Samtools SNP F |
| L134 | А      | А      | А      | А       | А       | А       | NO     | В       | В      | NO     | С      | С       | С       | D       | D       | EXCL    | NO      | EXCL    | 14 AD           | PubMLST v1     | ChewBBACA      |
| L104 | А      | А      | А      | А       | А       | А       | NO     | В       | В      | NO     | С      | С       | С       | D       | D       | EXCL    | EXCL    | EXCL    | 10 SNPs / 31 AD | Innuendo WG    | CSI Phylogeny  |
| L171 | А      | А      | А      | А       | А       | А       | NO     | В       | В      | NO     | С      | С       | С       | D       | D       | EXCL    | EXCL    | EXCL    | 14 AD           | Ridom core+Acc | Ridom SeqSphe  |
| L144 | А      | А      | А      | А       | А       | NO      | NO     | NO      | NO     | NO     | С      | NO      | С       | D       | D       | EXCL    | EXCL    | EXCL    | 5 AD            | PubMLST v1     | in house       |

FIGURE 3. Depiction of the different clusters identified by the NRLs



ere

# Part 2 - Results

- 14 NRLs fulfilled the criteria for satisfactory performance
- 10 NRLs scored below the criteria for satisfactory performance

**TABLE 8.** Overview indicate number of sa

| Lab  | Evaluation |
|------|------------|
| ID   | sequence   |
|      | quality    |
| L104 | 3/3        |
| L105 | 2/3        |
| L106 | 3/3        |
| L107 | 3/3        |
| L110 | 1/3        |
| L124 | 3/3        |
| L128 | 3/3        |
| L134 | 2/3        |
| L139 | 1/3        |
| L143 | 3/3        |
| L144 | 3/3        |
| L145 | 3/3        |
| L148 | 3/3        |
| L152 | 2/3        |
| L156 | 3/3        |
| L158 | 3/3        |
| L171 | 3/3        |
| L175 | 3/3        |
| L178 | 3/3        |
| L179 | 3/3        |
| L183 | 3/3        |
| L186 | 3/3        |
| L189 | 2/3        |
| L199 | 3/3        |
|      |            |

| of | Species<br>identification | MLST<br>determination | Cluster<br>detection | Overall evaluation sequence quality |  |  |  |  |  |
|----|---------------------------|-----------------------|----------------------|-------------------------------------|--|--|--|--|--|
|    | 15/15                     | 15/15                 | AB, C and D          | Satisfactory                        |  |  |  |  |  |
|    | 15/15                     | 15/15                 | AB and C             | Needs improvement                   |  |  |  |  |  |
|    | 15/15                     | 15/15                 | A, C and D           | Satisfactory                        |  |  |  |  |  |
|    | 15/15                     | 14/15                 | A, C and D           | Needs improvement                   |  |  |  |  |  |
|    | 15/15                     | 15/15                 | AB, C and D          | Needs improvement                   |  |  |  |  |  |
|    | 15/15                     | 15/15                 | AB, C and D          | Satisfactory                        |  |  |  |  |  |
|    | Not performed             | 10/15                 | AB, C and D          | Needs improvement                   |  |  |  |  |  |
|    | 15/15                     | 15/15                 | AB, C and D          | Needs improvement                   |  |  |  |  |  |
|    | 15/15                     | 15/15                 | AB, C and D          | Needs improvement                   |  |  |  |  |  |
|    | 15/15                     | 12/12                 | A, C and D           | Satisfactory                        |  |  |  |  |  |
|    | 15/15                     | 15/15                 | A, C and D           | Satisfactory                        |  |  |  |  |  |
|    | 15/15                     | 15/15                 | AB, C and D          | Satisfactory                        |  |  |  |  |  |
|    | 13/13                     | 13/13                 | A, C and D           | Satisfactory                        |  |  |  |  |  |
|    | 15/15                     | 15/15                 | A, C and D           | Needs improvement                   |  |  |  |  |  |
|    | 15/15                     | 15/15                 | AB, C and D          | Satisfactory                        |  |  |  |  |  |
|    | 15/15                     | 15/15                 | A, C and D           | Satisfactory                        |  |  |  |  |  |
|    | 15/15                     | 15/15                 | AB, C and D          | Satisfactory                        |  |  |  |  |  |
|    | 15/15                     | 15/15                 | AB, C and D          | Satisfactory                        |  |  |  |  |  |
|    | 15/15                     | 15/15                 | AB, C and D          | Satisfactory                        |  |  |  |  |  |
|    | 15/15                     | 15/15                 | AB, C and D          | Satisfactory                        |  |  |  |  |  |
|    | 15/15                     | 12/14                 | A, C and D           | Needs improvement                   |  |  |  |  |  |
|    | 15/15                     | 15/15                 | A, C and D           | Satisfactory                        |  |  |  |  |  |
|    | 14/15                     | 15/15                 | A, C and D           | Needs improvement                   |  |  |  |  |  |
|    | 15/15                     | 15/15                 | А                    | Needs improvement                   |  |  |  |  |  |

## Trends



PRESS RELEASE

Illumina introduces the MiSeq i100 Series: its simplest, fastest benchtop sequencers

Oct 9, 2024





Readlen

#### SWEDISH VETERINARY AGENCY

Contigs (len 500+)



Readlen

# Trends



Library prep kit



#### SWEDISH VETERINARY AGENCY



#### trimming



## Next WGS PT

- EURL-*Campylobacter* will offer a WGS PT 2026
- Similar as PT38
  - WGS part DNA samples for sequencing
  - Sequence analysis part Dataset for sequence and cluster analysis

### www.sva.se

# bo.segerman@sva.se asgeir.astvaldsson@sva.se

# Thank you!





