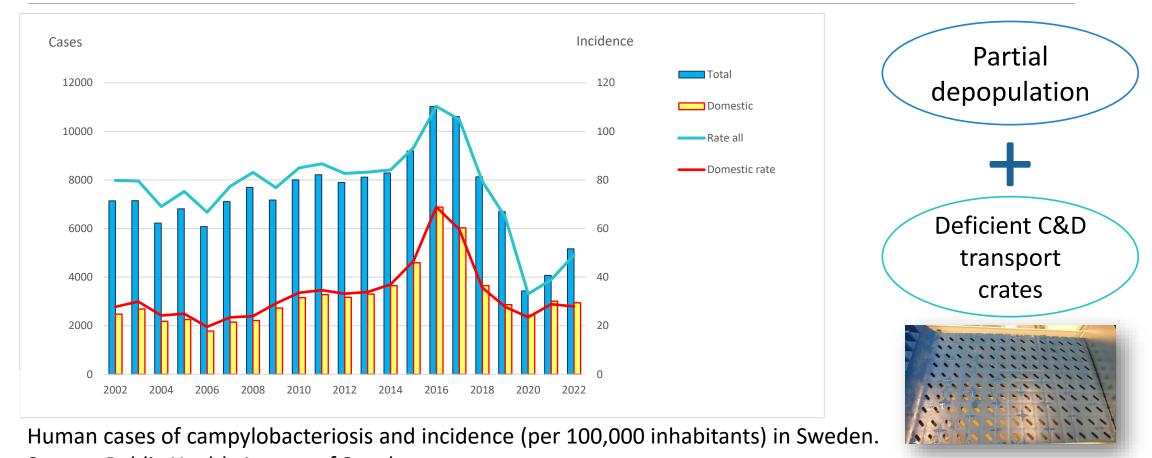
Occurrence of *Campylobacter* in slaughterhouses before and after cleaning and disinfection


MADELEINE MOAZZAMI

SWEDISH FOOD AGENCY/SWEDISH UNIVERSITY OF AGRICULTURAL SCIENCES

Campylobacteriosis

Chicken meat

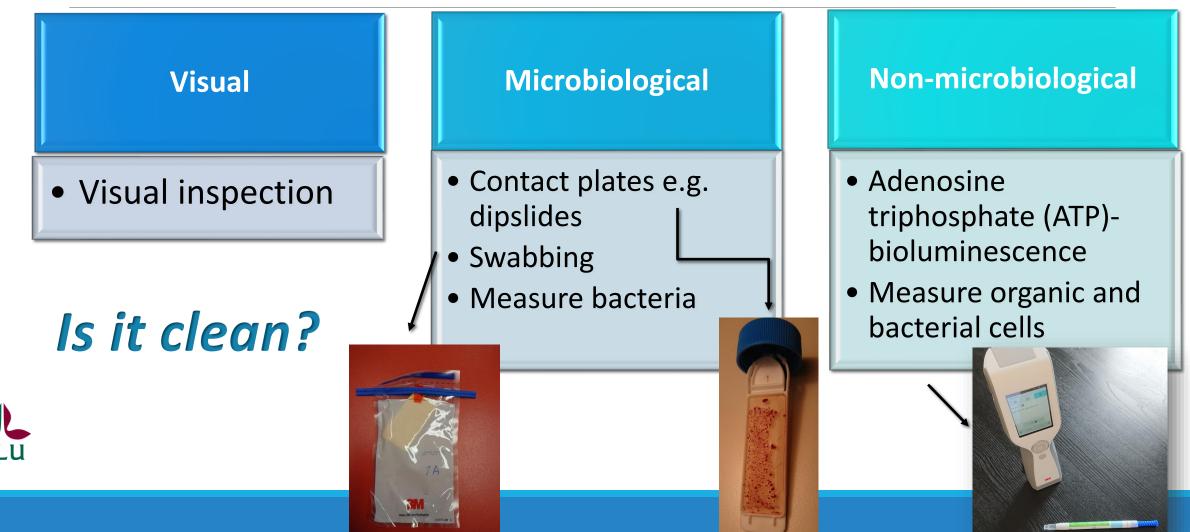
Source: Public Health Agency of Sweden

C&D = Cleaning and disinfection

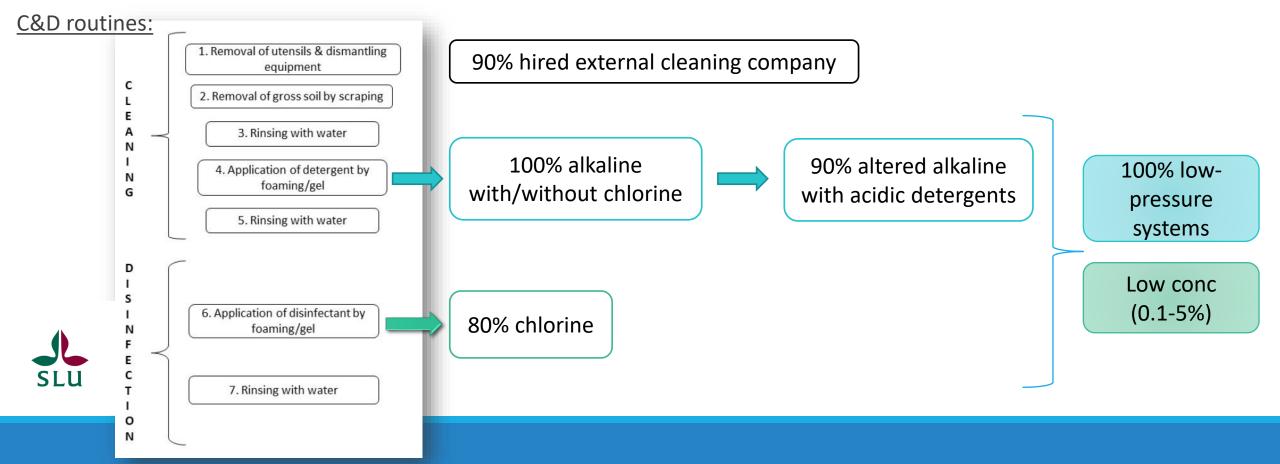
SLU

Introduction

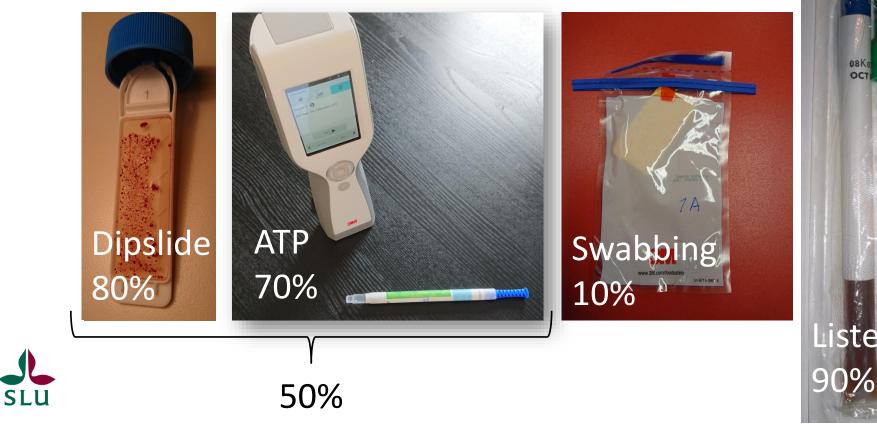
Contamination during slaughter


Cleaning and disinfection is an important control measure to prevent bacterial contamination of meat

<u>Cleaning</u>= removal of undesired material also called 'soil' (*e.g.* microorganisms, food residues, dust, allergens), by use of *detergents*


<u>Disinfection</u>= inactivation of microorganisms to avoid contamination, by use of *disinfectants* Introduction

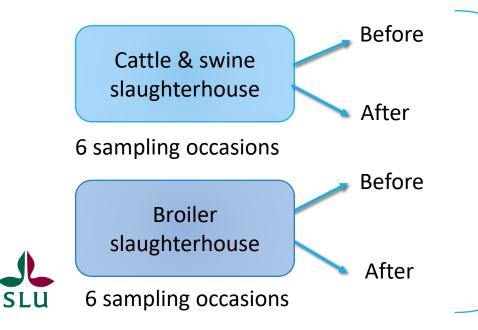
Monitoring cleaning and disinfection procedures


Interview study

Ten slaughterhouses participated: six red meat (32% of red meat slaughter) & four large scale poultry (90% of chicken slaughter)

Interview study

Monitoring activities:


Listeria

Difficult to clean surfaces: - e.g. conveyor belts, cutting tools, inside machines

Paper I & II

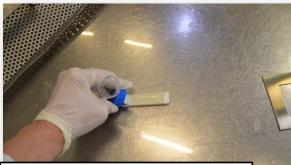
Study on efficacy of cleaning and disinfection

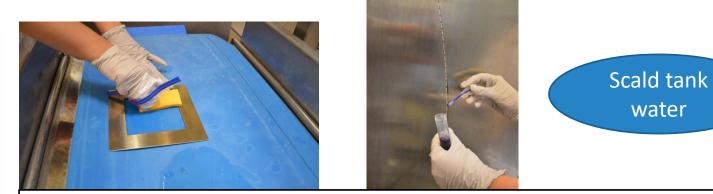
2 slaughterhouses:

Cary-Blair

 Food contact surfaces
 (e.g. salt injector needles, conveyor belts)

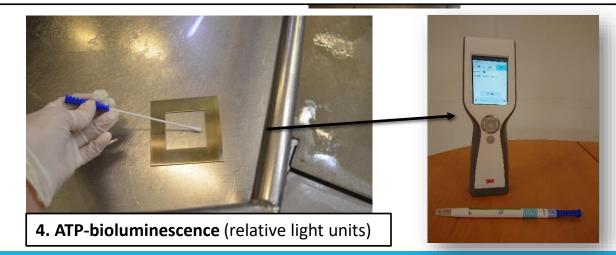
Non-food contact surfaces (e.g. drains, floor)




25 cm²/100 cm²

Materials and methods

Sampling on each surface:



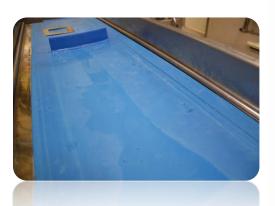
1. Dipslide (Total viable count)

2. Sponge / Swab (total aerobic bacteria, *Enterobacterales*, *Listeria monocytogenes*, ESBL *E. coli*)

Paper I & II

	Materials and methods	
-	Campylobacter sppQualitative analysis (ISO)	
Pathogens – (Paper II)	Listeria monocytogenes	 Maldi-Tof
	Extended-spectrum beta-lactamase-producing (ESBL) E. coli	
Hygiene indicators (Paper I)	Realtive light units (ATP-bioluminescence)	 Whole-genome sequencing (MLST,
	Total viable count (Dipslides)	cgMLST)
	Total aerobic bacteria (Swabbing)	
	Enterobacterales (Swabbing)	 Antibiotic susceptibility testing (broth

microdilution)



Results: General hygiene (total aerobic count)

~ 50% of the surfaces were

acceptably clean

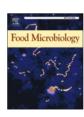
Processing areas more properly cleaned than slaughter areas

Research Paper

Assessment of ATP-Bioluminescence and Dipslide Sampling to Determine the Efficacy of Slaughterhouse Cleaning and Disinfection Compared with Total Aerobic and *Enterobacterales* Counts

Madeleine Moazzami^{1,*}, Emma Bergenkvist¹, Sofia Boqvist¹, Sara Frosth¹, Solveig Langsrud², Trond Møretrø², Ivar Vågsholm¹, Ingrid Hansson¹

¹ Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden ² Norwegian Institute of Food, Fishery and Aquaculture Research, N 1430 as, Norway


Paper II

Results: *Campylobacter*

Food Microbiology 125 (2025) 104639

Contents lists available at ScienceDirect

Food Microbiology

journal homepage: www.elsevier.com/locate/fm

Occurrence of *Campylobacter, Listeria monocytogenes*, and extended-spectrum beta-lactamase *Escherichia coli* in slaughterhouses before and after cleaning and disinfection

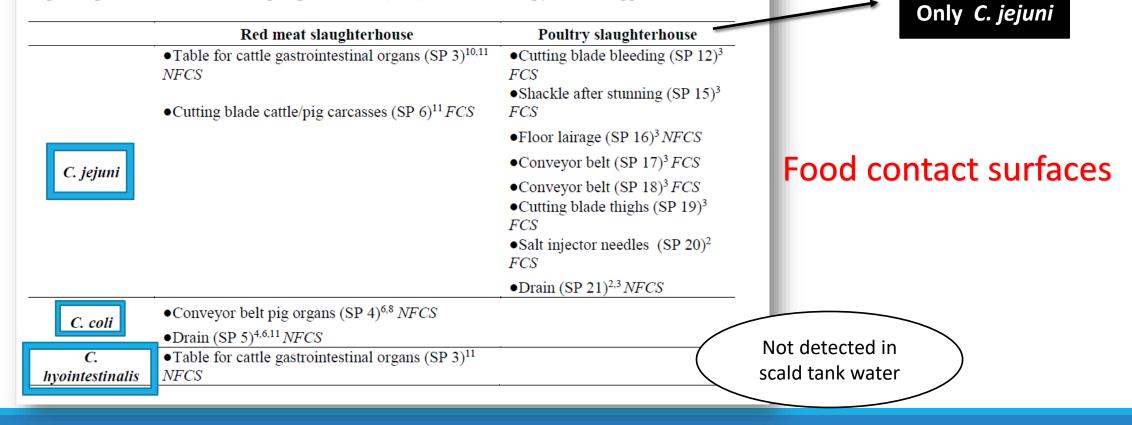
Madeleine Moazzami^{a,*}, Emma Bergenkvist^a, Sofia Boqvist^a, Sara Frosth^a, Solveig Langsrud^b, Trond Møretrø^b, Ivar Vågsholm^a, Ingrid Hansson^a

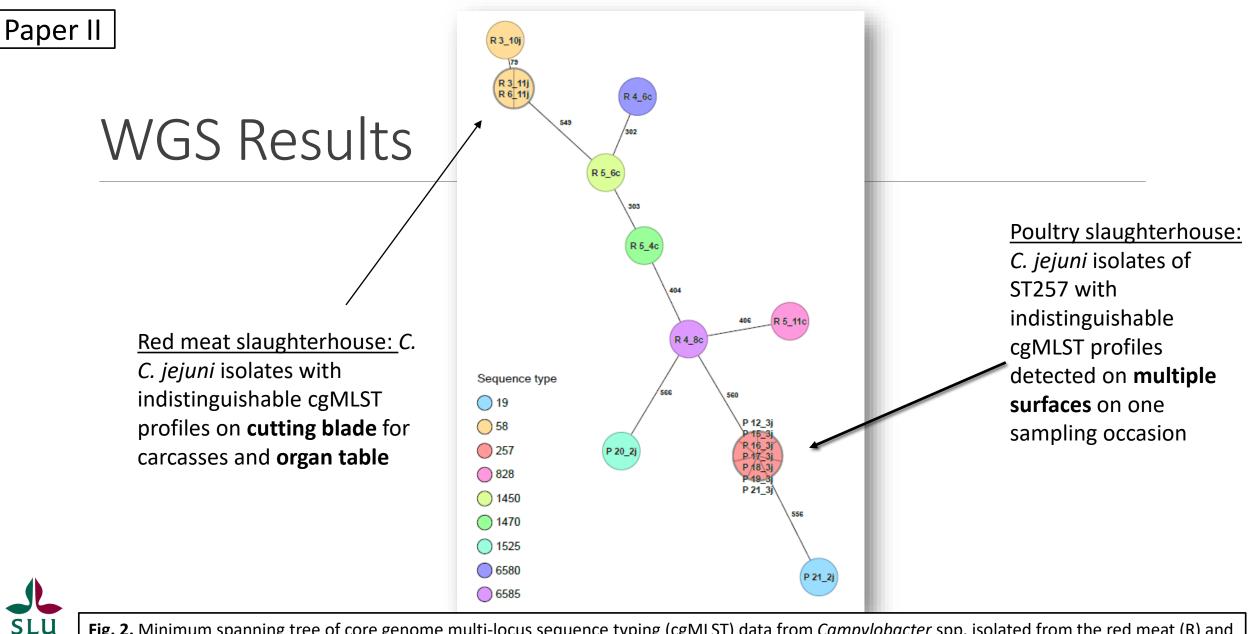
^a Department of Animal Biosciences, Swedish University of Agricultural Sciences, 750 07, Uppsala, Sweden ^b Norwegian Institute of Food, Fishery and Aquaculture Research, N 1430, Ås, Norway

SEVIER

Occurrence (%) of *Campylobacter* spp. Ratio of positive samples to total number of samples in brackets

 Slaughterhouse
 C&D
 Red meat
 Poultry


 before 13.0% (8/62)
 15.5% (9/58)

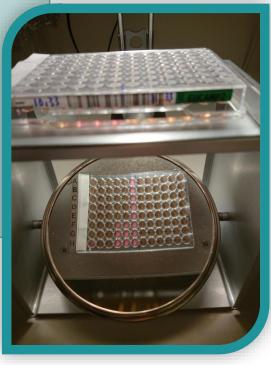

 after 0% (0/0)
 0% (0/0)

In total 240 samples collected

Results: Campylobacter

Table 3. Campylobacter spp. isolated from sampling points (SP) on food contact surfaces (*FCS*) and non-food contact surfaces (*NFCS*) before cleaning and disinfection in the two slaughterhouses. Superscript numbers indicate sampling occasions (1-12) on which *Campylobacter* spp. were detected

Fig. 2. Minimum spanning tree of core genome multi-locus sequence typing (cgMLST) data from *Campylobacter* spp. isolated from the red meat (R) and poultry (P) slaughterhouse (*n*=17) (first value after slaughterhouse type (R/P) indicates sampling point, second value indicates sampling occasion). j = C. *jejuni*. c = C. coli. Values on lines are number of allelic differences (line length not proportional to number).


Paper II

AMR Results

C. jejuni: one (9.1%) isolate showed resistance to ciprofloxacin and nalidixic acid

C. coli: four (80%) isolates showed resistance to streptomycin

All isolates were susceptible to erythromycin, gentamicin and tetracycline

Discussion

Broilers are rarely treated with antimicrobials in Sweden \rightarrow AMR

Campylobacter were not detected after C&D, but what if the sampling area would have been larger?

Low number of samples with Campylobacter before C&D (only ~5% of chickens Campylobacter-positive at the farm)

Biosecurity

Take home messages

It is possible to remove Campylobacter through proper cleaning and disinfection

Before C&D: Campylobacter spp. were detected on critical food contact surfaces

Slaughter hygiene is important to prevent cross-contamination of the meat

Acknowledgements

Co-authors: Swedish University of Agricultural Sciences (SLU): Ingrid Hansson Sofia Boqvist Sara Frosth Ivar Vågsholm Emma Bergenkvist Norwegian institute of food, fisheries and agricultural research (Nofima): Trond Møretrø

Solveig Langsrud

Other papers involving reduction of Campylobacter in slaughterhouses

572

Journal of Food Protection, Vol. 84, No. 4, 2021, Pages 572–578 https://doi.org/10.4315/JFP-20-395 Published 2021 by the International Association for Food Protection This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/)

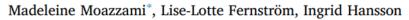
Research Note

Reducing Campylobacter jejuni, Enterobacteriaceae, Escherichia coli, and Total Aerobic Bacteria on Broiler Carcasses Using Combined Ultrasound and Steam

MADELEINE MOAZZAMI,¹*† EMMA BERGENKVIST,¹† LISE-LOTTE FERNSTRÖM,¹ JESPER RYDÉN,² and INGRID HANSSON¹

¹Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Ulls väg 26, 750 07 Uppsala, Sweden (ORCID: https://orcid.org/0000-0001-7038-911X [M.M.]; https://orcid.org/0000-0003-3764-2341 [I.H.]); and ²Department of Energy and Technology, Swedish University of Agricultural Sciences, Lennart Hjelms väg 9, 750 07 Uppsala, Sweden (ORCID: https://orcid.org/0000-0002-5451-4563 [J.R.])

MS 20-395: Received 30 September 2020/Accepted 9 November 2020/Published Online 12 November 2020


Food Control 119 (2021) 107424

Contents lists available at ScienceDirect

Food Control

journal homepage: www.elsevier.com/locate/foodcont

Reducing *Campylobacter jejuni*, *Enterobacteriaceae* and total aerobic bacteria on transport crates for chickens by irradiation with 265-nm ultraviolet light (UV–C LED)

Swedish University of Agricultural Sciences, Department of Biomedical Sciences and Veterinary Public Health (BVF), Division of Food Safety, Campus Ultuna, Ulls Väg 26, Box 7036, 750 07, Uppsala, Sweden

CONTRO

CONTROI CONTROI CONTROI CONTROI CONTROI

CONTROI CONTROI CONTROI

Thank you for listening!

Questions?

